

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 # Stream Analysis for Bias Estimation and Reduction

Theory
Large scale hydrological models are often biased despite the best calibration efforts. Bias correction is a pre- or
post-processing step applied to the model’s inputs or outputs to empirically alter datasets and improve model performance.
SABER is a bias correction post processor for discharge predictions. SABER builds on frequency matching ideas used in several
other methods that match biased predictions with observed data with corresponding exceedance probabilities; that is,
using the flow duration curve. SABER expands this approach to ungauged stream reaches using spatial analysis, clustering
(machine learning), and statistical refinements and a new concept- the scalar flow duration curve.

Python environment
See requirements.txt

Required Data/Inputs
You need the following data to follow this procedure. Geopackage format GIS data may be substituted with Shapefile or
equivalent formats that can be read by geopandas.
1. Geopackage drainage Lines (usually delineated center lines) and catchments/subbasins (polygons) in the watershed. The

	attribute tables for both should contain (at least) the following entries for each feature:
	
	An identifier column (alphanumeric) labeled model_id

	The ID of the next downstream reach/subbasin labeled downstream_model_id

	The stream order of each reach/subbasin labeled order

	Cumulative upstream drainage area labeled

	The x coordinate of the centroid of each feature (precalculated for faster results later)

	The y coordinate of the centroid of each feature (precalculated for faster results later)

	Geopackage points representing the location of each of the river gauging stations available. The attribute table
should contain (at least) the following entries for each point

	A unique ID number or name assigned to the gauge, preferably short alphanumeric. You can randomly generate them if convenient

	The ID of the stream segment in the model which corresponds to that gauge.

	Hindcast/historical simulation discharge for each stream reach

	Observed discharge data for each gauge

Things to check when preparing your data
1. The units of the simulated and observed data are in the same units
2. The GIS datasets are all in the same projection.
3. The GIS datasets should only contain gauges and reaches/subbasins within the area of interest. Clip/delete anything

else. You might find it helpful to keep a watershed boundary geopackage.

Process
1 Create a Working Directory

Your working directory should exactly like this.
```
working_directory


tables/
data_inputs/
kmeans_outputs/
gis_outputs/




```

2 Prepare Spatial Data (scripts not provided)
This step instructs you to collect 3 gis files and use them to generate 2 tables. All 5 files (3 gis files and 2
tables) should go in the gis_inputs directory

	Clip model drainage lines and catchments shapefile to extents of the region of interest.
For speed/efficiency, merge their attribute tables and save as a csv.
- read drainage line shapefile and with GeoPandas
- delete all columns *except*: NextDownID, COMID, Tot_Drain_, order_
- rename the columns:

	NextDownID -> downstream_model_id

	COMID -> model_id

	Tot_Drain -> drainage_area

	order_ -> stream_order

	compute the x and y coordinates of the centroid of each feature (needs the geometry column)

	delete geometry column

	save as drain_table.csv in the gis_inputs directory

Tip to compute the x and y coordinates using geopandas

```python
import geopandas as gpd


	def to_x(a):
	return a.x



	def to_y(a):
	return a.y





drain_shape = ‘/path/to/drainagelines/shapefile’
gdf = gpd.read_file(drain_shape)

gdf[‘x’] = gdf.centroid.apply(to_x)
gdf[‘y’] = gdf.centroid.apply(to_y)

gdf.to_file(‘/file/path/to/save’, driver=’GeoJSON’)

```

Your table should look like this:

downstream_model_id | model_id | model_drain_area | stream_order | x | y |

---------------------	—————–	------------------	————–	-----	—–
unique_stream_#	unique_stream_#	area in km^2	stream_order	##	##
unique_stream_#	unique_stream_#	area in km^2	stream_order	##	##
unique_stream_#	unique_stream_#	area in km^2	stream_order	##	##
…	…	…	…	…	…

	Prepare a csv of the attribute table of the gauge locations shapefile.
- You need the columns:

	model_id

	gauge_id

	drainage_area (if known)

Your table should look like this (column order is irrelevant):

model_id | gauge_drain_area | gauge_id |

-------------------	——————	------------------
unique_stream_num	area in km^2	unique_gauge_num
unique_stream_num	area in km^2	unique_gauge_num
unique_stream_num	area in km^2	unique_gauge_num
…	…	…

Your project’s working directory now looks like
```
working_directory/



	kmeans_models/
	(empty)



	kmeans_images/
	(empty)



	data_inputs/
	(empty)



	data_observed/
	(empty)



	gis_inputs/
	drain_table.csv
gauge_table.csv
drainageline_shapefile.shp (name/gis_format do not need to match)
catchment_shapefile.shp (name/gis_format do not need to match)
gauge_shapefile.shp (name/gis_format do not need to match)



	gis_outputs/
	(empty)



	validation_sets/
	(empty)








```

3 Create the Assignments Table
The Assignments Table is the core of the regional bias correction method it is a table which has a column for every
stream segment in the model and several columns of other information which are filled in during the RBC algorithm. It
looks like this:

downstream_model_id | model_id | drainage_area | stream_order | gauge_id |

---------------------	——————-	---------------	————–	------------------
unique_stream_num	unique_stream_num	area in km^2	stream_order	unique_gauge_num
unique_stream_num	unique_stream_num	area in km^2	stream_order	unique_gauge_num
unique_stream_num	unique_stream_num	area in km^2	stream_order	unique_gauge_num
…	…	…	…	…

`python
import saber as saber
workdir = '/path/to/project/directory/'
saber.table.gen(workdir)
`

Your project’s working directory now looks like
```
working_directory/


assign_table.csv    <– New


	kmeans_models/
	(empty)



	kmeans_images/
	(empty)



	data_inputs/
	(empty)



	data_processed/
	(empty)



	gis_inputs/
	drain_table.csv
gauge_table.csv
drainageline_shapefile.shp (name/gis_format do not need to match)
catchment_shapefile.shp (name/gis_format do not need to match)
gauge_shapefile.shp (name/gis_format do not need to match)



	gis_outputs/
	(empty)



	validation_sets/
	(empty)








```

4 Prepare Discharge Data -> Create 5 csv files (function available for geoglows data)
This step instructs you to gather simulated data and observed data. The raw simulated data (netCDF) and raw observed
data (csvs) should be included in the data_inputs folder. You may keep them in another location and provide the path
as an argument in the functions that need it. These datasets are used to generate several additional csv files which
are stored in the data_processed directory and are used in later steps. The netCDF file may have any name and the
directory of observed data csvs should be called obs_csvs.

Use the dat

	Create a single large csv of the historical simulation data with a datetime column and 1 column per stream segment labeled by the stream’s ID number.

datetime | model_id_1 | model_id_2 | model_id_3 |

------------	————	------------	————
1979-01-01	50	50	50
1979-01-02	60	60	60
1979-01-03	70	70	70
…	…	…	…

	Process the large simulated discharge csv to create a 2nd csv with the flow duration curve on each segment (script provided).

p_exceed | model_id_1 | model_id_2 | model_id_3 |

----------	————	------------	————
100	0	0	0
99	10	10	10
98	20	20	20
…	…	…	…

	Process the large historical discharge csv to create a 3rd csv with the monthly averages on each segment (script provided).

month | model_id_1 | model_id_2 | model_id_3 |

-------	————	------------	————
1	60	60	60
2	30	30	30
3	70	70	70
…	…	…	…

```python
import saber as saber

workdir = ‘/path/to/working/directory’


	saber.prep.hindcast(
	workdir,
‘/path/to/historical/simulation/netcdf.nc’  # optional - if nc not stored in data_inputs folder





)
saber.prep.observed_data(


workdir,
‘/path/to/obs/csv/directory’  # optional - if csvs not stored in workdir/data_inputs/obs_csvs





)

After this step, you should have a directory of data that looks like this:

```
working_directory/

assign_table.csv

	kmeans_models/
	(empty)

	kmeans_images/
	(empty)

	data_inputs/ <– New /
	historical_simulation.nc (name varies)
obs_csvs/

12345.csv
67890.csv
…

	data_processed/
	obs-fdc.csv
obs-monavg.csv
obs-fdc.csv
obs-monavg.csv
subset_time_series.pickle <– New /

	gis_inputs/
	(same as previous steps…)

	gis_outputs/
	
(empty)

	validation_sets/
	(empty)


```

### 5 K-means clustering
For each of the following, generate and store clusters for many group sizes- between 2 and 12 should be sufficient.
1. Create clusters of the simulated data by their flow duration curve.
2. Create clusters of the simulated data by their monthly averages.
3. Create clusters of the observed data by their flow duration curve.
4. Create clusters of the observed data by their monthly averages.
5. Track the error/inertia/residuals for each number of clusters identified.

Use this code:

```python
import saber as saber

workdir = ‘/path/to/project/directory/’
saber.cluster.generate(workdir)
```

This function creates trained kmeans models saved as pickle files, plots (from matplotlib) of what each of the clusters
look like, and csv files which tracked the inertia (residuals) for each number of clusters. Use the elbow method to
identify the correct number of clusters to use on each of the 4 datasets clustered.

Your working directory should be updated with the following

```
working_directory/

assign_table.csv

	kmeans_models/
	best-fit-cluster-count.csv
sim-fdc-inertia.csv
sim-monavg-inertia.csv
obs-fdc-inertia.csv
obs-monavg-inertia.csv

sim-fdc-norm-2-clusters-model.pickle
sim-fdc-norm-3-clusters-model.pickle
sim-fdc-norm-4-clusters-model.pickle
…

	kmeans_images/
	sim-fdc-norm-2-clusters.png
sim-fdc-norm-3-clusters.png
sim-fdc-norm-4-clusters.png
…

	data_inputs/
	(same as previous steps…)

	data_processed/
	(same as previous steps…)

	gis_inputs/
	(same as previous steps…)

	gis_outputs/
	(empty)

	validation_sets/
	(empty)


```

### 6 Assign basins by Location (streams which contain a gauge)
This step involves editing the assign_table.csv and but does not change the file structure of the project.

This step uses the information prepared in the previous steps to assign observed streamflow information to modeled
stream segments which will be used for calibration. This step does not produce any new files but it does edit the
existing assign_table csv file. After running these lines, use the rbc.table.cache function to write the changes to
disc.

The justification for this is obvious. The observations are the actual streamflow for that basin.


	If a basin contains a gauge, the simulated basin should use the data from the gauge in that basin.


	The reason listed for this assignment is “gauged”




```python
import saber as saber

assign_table = pandas DataFrame (see saber.table module)
workdir = ‘/path/to/project/directory/’
assign_table = saber.table.read(workdir)
saber.assign.gauged(assign_table)
```

### 7 Assign basins by Propagation (hydraulically connected to a gauge)
This step involves editing the assign_table.csv and does not change the file structure of the project.

Theory: being up/down stream of the gauge but on the same stream order probably means that the seasonality of the flow is
probably the same (same FDC), but the monthly average may change depending on how many streams connect with/diverge from the stream.
This assumption becomes questionable as the stream order gets larger so the magnitude of flows joining the river may be larger,
be less sensitive to changes in flows up stream, may connect basins with different seasonality, etc.


	Basins that are (1) immediately up or down stream of a gauge and (2) on streams of the same order should use that gauged data.


	The reason listed for this assignment is “propagation-{direction}-{i}” where direction is either “upstream” or “downstream” and
i is the number of stream segments up/down from the gauge the river is.




```python
import saber as saber

assign_table = pandas DataFrame (see saber.table module)
workdir = ‘/path/to/project/directory/’
assign_table = saber.table.read(workdir)
saber.assign.propagation(assign_table)
```

### 8 Assign basins by Clusters (hydrologically similar basins)
This step involves editing the assign_table.csv and but does not change the file structure of the project.

Using the results of the optimal clusters
- Spatially compare the locations of basins which were clustered for being similar on their flow duration curve.
- Review assignments spatially. Run tests and view improvements. Adjust clusters and reassign as necessary.

```python
import saber as saber

assign_table = pandas DataFrame (see saber.table module)
workdir = ‘/path/to/project/directory/’
assign_table = saber.table.read(workdir)
saber.assign.clusters_by_dist(assign_table)
```

### 9 Generate GIS files of the assignments
At any time during these steps you can use the functions in the rbc.gis module to create GeoJSON files which you can
use to visualize the results of this process. These GIS files help you investigate which streams are being selected and
used at each step. Use this to monitor the results.

```python
import saber as saber

workdir = ‘/path/to/project/directory/’
assign_table = saber.table.read(workdir)
drain_shape = ‘/my/file/path/’
saber.gis.clip_by_assignment(workdir, assign_table, drain_shape)
saber.gis.clip_by_cluster(workdir, assign_table, drain_shape)
saber.gis.clip_by_unassigned(workdir, assign_table, drain_shape)

or if you have a specific set of ID’s to check on
list_of_model_ids = [123, 456, 789]
saber.gis.clip_by_ids(workdir, list_of_model_ids, drain_shape)
```

After this step, your project directory should look like this:

```
working_directory/

assign_table.csv

	kmeans_models/
	(same as previous steps…)

	kmeans_images/
	(same as previous steps…)

	data_inputs/
	(same as previous steps…)

	data_processed/
	(same as previous steps…)

	gis_inputs/
	(same as previous steps…)

	gis_outputs/
	assignments_cluster_0.json <– New /
assignments_cluster_1.json
…

assignments_gauged.json

assignments_propagation-downstream-1.json
…

assignments_propagation-upstream-1.json
…

obs-fds-cluster-0.json
obs-fds-cluster-1.json
…

sim-fdc-cluster-0.json
sim-fdc-cluster-1.json
… <– New /

	validation_sets/
	(empty)


```

### 10 Calibrate the region
This step creates a netCDF of the best guess at historically simulated flows for all stream reaches in a region.

```
working_directory/

assign_table.csv
calibrated_simulated_flow.nc <– New

	kmeans_models/
	(same as previous steps…)

	kmeans_images/
	(same as previous steps…)

	data_inputs/
	(same as previous steps…)

	data_processed/
	(same as previous steps…)

	gis_inputs/
	(same as previous steps…)

	gis_outputs/
	(same as previous steps…)

	validation_sets/
	(empty)


```

## Analyzing Performance
This bias correction method should adjust all streams toward a more realistic but still not perfect value for discharge.
The following steps help you to analyze how well this method performed in a given area by iteratively running this
method on the same set of streams but with an increasing number of randomly selected observed data stations being
excluded each time. The code provided will help you partition your gauge table into randomly selected subsets.

### Steps
1. Perform the bias correction method with all available observed data.
2. Generate 5 subsets of the gauge table (using provided code)



	One with ~90% of the gauges (drop a random 10% of the observed data stations)


	One with ~80% of the gauges (drop the same gauges as before *and* and additional random 10%)


	One with ~70% of the gauges (drop the same gauges as before *and* and additional random 10%)


	One with ~60% of the gauges (drop the same gauges as before *and* and additional random 10%)


	One with ~50% of the gauges (drop the same gauges as before *and* and additional random 10%)








	Perform the bias correction method 5 additional times using the 5 new tables created in the previous step. You now
have 6 separate bias correction instances; 1 with all available observed data and 5 with decreasing amounts of
observed data included.


	For each of the 5 corrected models with observed data withheld, use the provided code to generate plots and maps of
the performance metrics. This will compare the best approximation of the bias corrected model data for that instance
against the observed data which was withheld from the bias correction process.




```python
import saber as saber
workdir = ‘/path/to/project/directory’
drain_shape = ‘/path/to/drainageline/gis/file.shp’
obs_data_dir = ‘/path/to/obs/data/directory’ # optional - if data not in workdir/data_inputs/obs_csvs

saber.validate.sample_gauges(workdir)
saber.validate.run_series(workdir, drain_shape, obs_data_dir)
```

After this step your working directory should look like this:

```
working_directory/

assign_table.csv
calibrated_simulated_flow.nc
kmeans_models/

(same as previous steps…)

	kmeans_images/
	(same as previous steps…)

	data_inputs/
	(same as previous steps…)

	data_processed/
	(same as previous steps…)

	gis_inputs/
	(same as previous steps…)

	gis_outputs/
	(same as previous steps…)

	validation_sets/
	
	50/
	assign_table.csv
calibrated_simulated_flow.nc
kmeans_models/

(similar contents as in previous section)

	kmeans_images/
	(similar contents as in previous section)

	data_inputs/
	(empty)

	data_processed/
	(similar contents as in previous section)

	gis_inputs/
	(similar contents as in previous section)

	gis_outputs/
	(similar contents as in previous section)

	60/
	(same structure as 50/ but with a different gauge_table.csv)

	70/
	(same structure as 50/ but with a different gauge_table.csv)

	80/
	(same structure as 50/ but with a different gauge_table.csv)

	90/
	(same structure as 50/ but with a different gauge_table.csv)


```




            

          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          Welcome to Read the Docs
        


      


    
  

_static/plus.png





_static/file.png





_static/minus.png





